Jonas Schäfer 2019-02-14 16:35:28 +01:00
parent 2b70b57f32
commit 07606b0cd2
2 changed files with 361 additions and 1 deletions

View file

@ -3,7 +3,7 @@ import curses
import hashlib
import math
import hsluv
from . import hsluv
Palette = Dict[float, int]

360
poezio/hsluv.py Normal file
View file

@ -0,0 +1,360 @@
# This file was taken from https://github.com/hsluv/hsluv-python
#
# Copyright (c) 2015 Alexei Boronine
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
""" This module is generated by transpiling Haxe into Python and cleaning
the resulting code by hand, e.g. removing unused Haxe classes. To try it
yourself, clone https://github.com/hsluv/hsluv and run:
haxe -cp haxe/src hsluv.Hsluv -python hsluv.py
"""
import math
__version__ = '0.0.2'
m = [[3.240969941904521, -1.537383177570093, -0.498610760293],
[-0.96924363628087, 1.87596750150772, 0.041555057407175],
[0.055630079696993, -0.20397695888897, 1.056971514242878]]
minv = [[0.41239079926595, 0.35758433938387, 0.18048078840183],
[0.21263900587151, 0.71516867876775, 0.072192315360733],
[0.019330818715591, 0.11919477979462, 0.95053215224966]]
refY = 1.0
refU = 0.19783000664283
refV = 0.46831999493879
kappa = 903.2962962
epsilon = 0.0088564516
hex_chars = "0123456789abcdef"
def _distance_line_from_origin(line):
v = math.pow(line['slope'], 2) + 1
return math.fabs(line['intercept']) / math.sqrt(v)
def _length_of_ray_until_intersect(theta, line):
return line['intercept'] / (math.sin(theta) - line['slope'] * math.cos(theta))
def _get_bounds(l):
result = []
sub1 = math.pow(l + 16, 3) / 1560896
if sub1 > epsilon:
sub2 = sub1
else:
sub2 = l / kappa
_g = 0
while _g < 3:
c = _g
_g = _g + 1
m1 = m[c][0]
m2 = m[c][1]
m3 = m[c][2]
_g1 = 0
while _g1 < 2:
t = _g1
_g1 = _g1 + 1
top1 = (284517 * m1 - 94839 * m3) * sub2
top2 = (838422 * m3 + 769860 * m2 + 731718 * m1) * l * sub2 - (769860 * t) * l
bottom = (632260 * m3 - 126452 * m2) * sub2 + 126452 * t
result.append({'slope': top1 / bottom, 'intercept': top2 / bottom})
return result
def _max_safe_chroma_for_l(l):
bounds = _get_bounds(l)
_hx_min = 1.7976931348623157e+308
_g = 0
while _g < 2:
i = _g
_g = _g + 1
length = _distance_line_from_origin(bounds[i])
if math.isnan(_hx_min):
_hx_min = _hx_min
elif math.isnan(length):
_hx_min = length
else:
_hx_min = min(_hx_min, length)
return _hx_min
def _max_chroma_for_lh(l, h):
hrad = h / 360 * math.pi * 2
bounds = _get_bounds(l)
_hx_min = 1.7976931348623157e+308
_g = 0
while _g < len(bounds):
bound = bounds[_g]
_g = (_g + 1)
length = _length_of_ray_until_intersect(hrad, bound)
if length >= 0:
if math.isnan(_hx_min):
_hx_min = _hx_min
elif math.isnan(length):
_hx_min = length
else:
_hx_min = min(_hx_min, length)
return _hx_min
def _dot_product(a, b):
sum = 0
_g1 = 0
_g = len(a)
while _g1 < _g:
i = _g1
_g1 = _g1 + 1
sum += a[i] * b[i]
return sum
def _from_linear(c):
if c <= 0.0031308:
return 12.92 * c
else:
return 1.055 * math.pow(c, 0.416666666666666685) - 0.055
def _to_linear(c):
if c > 0.04045:
return math.pow((c + 0.055) / 1.055, 2.4)
else:
return c / 12.92
def xyz_to_rgb(_hx_tuple):
return [
_from_linear(_dot_product(m[0], _hx_tuple)),
_from_linear(_dot_product(m[1], _hx_tuple)),
_from_linear(_dot_product(m[2], _hx_tuple))]
def rgb_to_xyz(_hx_tuple):
rgbl = [_to_linear(_hx_tuple[0]),
_to_linear(_hx_tuple[1]),
_to_linear(_hx_tuple[2])]
return [_dot_product(minv[0], rgbl),
_dot_product(minv[1], rgbl),
_dot_product(minv[2], rgbl)]
def _y_to_l(y):
if y <= epsilon:
return y / refY * kappa
else:
return 116 * math.pow(y / refY, 0.333333333333333315) - 16
def _l_to_y(l):
if l <= 8:
return refY * l / kappa
else:
return refY * math.pow((l + 16) / 116, 3)
def xyz_to_luv(_hx_tuple):
x = float(_hx_tuple[0])
y = float(_hx_tuple[1])
z = float(_hx_tuple[2])
divider = x + 15 * y + 3 * z
var_u = 4 * x
var_v = 9 * y
if divider != 0:
var_u = var_u / divider
var_v = var_v / divider
else:
var_u = float("nan")
var_v = float("nan")
l = _y_to_l(y)
if l == 0:
return [0, 0, 0]
u = 13 * l * (var_u - refU)
v = 13 * l * (var_v - refV)
return [l, u, v]
def luv_to_xyz(_hx_tuple):
l = float(_hx_tuple[0])
u = float(_hx_tuple[1])
v = float(_hx_tuple[2])
if l == 0:
return [0, 0, 0]
var_u = u / (13 * l) + refU
var_v = v / (13 * l) + refV
y = _l_to_y(l)
x = 0 - ((9 * y * var_u) / (((var_u - 4) * var_v) - var_u * var_v))
z = (((9 * y) - (15 * var_v * y)) - (var_v * x)) / (3 * var_v)
return [x, y, z]
def luv_to_lch(_hx_tuple):
l = float(_hx_tuple[0])
u = float(_hx_tuple[1])
v = float(_hx_tuple[2])
_v = (u * u) + (v * v)
if _v < 0:
c = float("nan")
else:
c = math.sqrt(_v)
if c < 0.00000001:
h = 0
else:
hrad = math.atan2(v, u)
h = hrad * 180.0 / 3.1415926535897932
if h < 0:
h = 360 + h
return [l, c, h]
def lch_to_luv(_hx_tuple):
l = float(_hx_tuple[0])
c = float(_hx_tuple[1])
h = float(_hx_tuple[2])
hrad = h / 360.0 * 2 * math.pi
u = math.cos(hrad) * c
v = math.sin(hrad) * c
return [l, u, v]
def hsluv_to_lch(_hx_tuple):
h = float(_hx_tuple[0])
s = float(_hx_tuple[1])
l = float(_hx_tuple[2])
if l > 99.9999999:
return [100, 0, h]
if l < 0.00000001:
return [0, 0, h]
_hx_max = _max_chroma_for_lh(l, h)
c = _hx_max / 100 * s
return [l, c, h]
def lch_to_hsluv(_hx_tuple):
l = float(_hx_tuple[0])
c = float(_hx_tuple[1])
h = float(_hx_tuple[2])
if l > 99.9999999:
return [h, 0, 100]
if l < 0.00000001:
return [h, 0, 0]
_hx_max = _max_chroma_for_lh(l, h)
s = c / _hx_max * 100
return [h, s, l]
def hpluv_to_lch(_hx_tuple):
h = float(_hx_tuple[0])
s = float(_hx_tuple[1])
l = float(_hx_tuple[2])
if l > 99.9999999:
return [100, 0, h]
if l < 0.00000001:
return [0, 0, h]
_hx_max = _max_safe_chroma_for_l(l)
c = _hx_max / 100 * s
return [l, c, h]
def lch_to_hpluv(_hx_tuple):
l = float(_hx_tuple[0])
c = float(_hx_tuple[1])
h = float(_hx_tuple[2])
if l > 99.9999999:
return [h, 0, 100]
if l < 0.00000001:
return [h, 0, 0]
_hx_max = _max_safe_chroma_for_l(l)
s = c / _hx_max * 100
return [h, s, l]
def rgb_to_hex(_hx_tuple):
h = "#"
_g = 0
while _g < 3:
i = _g
_g = _g + 1
chan = float(_hx_tuple[i])
c = math.floor(chan * 255 + 0.5)
digit2 = int(c % 16)
digit1 = int((c - digit2) / 16)
h += hex_chars[digit1] + hex_chars[digit2]
return h
def hex_to_rgb(hex):
hex = hex.lower()
ret = []
_g = 0
while _g < 3:
i = _g
_g = _g + 1
index = i * 2 + 1
_hx_str = hex[index]
digit1 = hex_chars.find(_hx_str)
index1 = i * 2 + 2
str1 = hex[index1]
digit2 = hex_chars.find(str1)
n = digit1 * 16 + digit2
ret.append(n / 255.0)
return ret
def lch_to_rgb(_hx_tuple):
return xyz_to_rgb(luv_to_xyz(lch_to_luv(_hx_tuple)))
def rgb_to_lch(_hx_tuple):
return luv_to_lch(xyz_to_luv(rgb_to_xyz(_hx_tuple)))
def hsluv_to_rgb(_hx_tuple):
return lch_to_rgb(hsluv_to_lch(_hx_tuple))
def rgb_to_hsluv(_hx_tuple):
return lch_to_hsluv(rgb_to_lch(_hx_tuple))
def hpluv_to_rgb(_hx_tuple):
return lch_to_rgb(hpluv_to_lch(_hx_tuple))
def rgb_to_hpluv(_hx_tuple):
return lch_to_hpluv(rgb_to_lch(_hx_tuple))
def hsluv_to_hex(_hx_tuple):
return rgb_to_hex(hsluv_to_rgb(_hx_tuple))
def hpluv_to_hex(_hx_tuple):
return rgb_to_hex(hpluv_to_rgb(_hx_tuple))
def hex_to_hsluv(s):
return rgb_to_hsluv(hex_to_rgb(s))
def hex_to_hpluv(s):
return rgb_to_hpluv(hex_to_rgb(s))