Embed hsluv
See: https://lab.louiz.org/poezio/poezio/merge_requests/13#note_7453
This commit is contained in:
parent
2b70b57f32
commit
07606b0cd2
2 changed files with 361 additions and 1 deletions
|
@ -3,7 +3,7 @@ import curses
|
||||||
import hashlib
|
import hashlib
|
||||||
import math
|
import math
|
||||||
|
|
||||||
import hsluv
|
from . import hsluv
|
||||||
|
|
||||||
Palette = Dict[float, int]
|
Palette = Dict[float, int]
|
||||||
|
|
||||||
|
|
360
poezio/hsluv.py
Normal file
360
poezio/hsluv.py
Normal file
|
@ -0,0 +1,360 @@
|
||||||
|
# This file was taken from https://github.com/hsluv/hsluv-python
|
||||||
|
#
|
||||||
|
# Copyright (c) 2015 Alexei Boronine
|
||||||
|
#
|
||||||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
# of this software and associated documentation files (the "Software"), to deal
|
||||||
|
# in the Software without restriction, including without limitation the rights
|
||||||
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
# copies of the Software, and to permit persons to whom the Software is
|
||||||
|
# furnished to do so, subject to the following conditions:
|
||||||
|
#
|
||||||
|
# The above copyright notice and this permission notice shall be included in all
|
||||||
|
# copies or substantial portions of the Software.
|
||||||
|
#
|
||||||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
# SOFTWARE.
|
||||||
|
""" This module is generated by transpiling Haxe into Python and cleaning
|
||||||
|
the resulting code by hand, e.g. removing unused Haxe classes. To try it
|
||||||
|
yourself, clone https://github.com/hsluv/hsluv and run:
|
||||||
|
|
||||||
|
haxe -cp haxe/src hsluv.Hsluv -python hsluv.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
__version__ = '0.0.2'
|
||||||
|
|
||||||
|
m = [[3.240969941904521, -1.537383177570093, -0.498610760293],
|
||||||
|
[-0.96924363628087, 1.87596750150772, 0.041555057407175],
|
||||||
|
[0.055630079696993, -0.20397695888897, 1.056971514242878]]
|
||||||
|
minv = [[0.41239079926595, 0.35758433938387, 0.18048078840183],
|
||||||
|
[0.21263900587151, 0.71516867876775, 0.072192315360733],
|
||||||
|
[0.019330818715591, 0.11919477979462, 0.95053215224966]]
|
||||||
|
refY = 1.0
|
||||||
|
refU = 0.19783000664283
|
||||||
|
refV = 0.46831999493879
|
||||||
|
kappa = 903.2962962
|
||||||
|
epsilon = 0.0088564516
|
||||||
|
hex_chars = "0123456789abcdef"
|
||||||
|
|
||||||
|
|
||||||
|
def _distance_line_from_origin(line):
|
||||||
|
v = math.pow(line['slope'], 2) + 1
|
||||||
|
return math.fabs(line['intercept']) / math.sqrt(v)
|
||||||
|
|
||||||
|
|
||||||
|
def _length_of_ray_until_intersect(theta, line):
|
||||||
|
return line['intercept'] / (math.sin(theta) - line['slope'] * math.cos(theta))
|
||||||
|
|
||||||
|
|
||||||
|
def _get_bounds(l):
|
||||||
|
result = []
|
||||||
|
sub1 = math.pow(l + 16, 3) / 1560896
|
||||||
|
if sub1 > epsilon:
|
||||||
|
sub2 = sub1
|
||||||
|
else:
|
||||||
|
sub2 = l / kappa
|
||||||
|
_g = 0
|
||||||
|
while _g < 3:
|
||||||
|
c = _g
|
||||||
|
_g = _g + 1
|
||||||
|
m1 = m[c][0]
|
||||||
|
m2 = m[c][1]
|
||||||
|
m3 = m[c][2]
|
||||||
|
_g1 = 0
|
||||||
|
while _g1 < 2:
|
||||||
|
t = _g1
|
||||||
|
_g1 = _g1 + 1
|
||||||
|
top1 = (284517 * m1 - 94839 * m3) * sub2
|
||||||
|
top2 = (838422 * m3 + 769860 * m2 + 731718 * m1) * l * sub2 - (769860 * t) * l
|
||||||
|
bottom = (632260 * m3 - 126452 * m2) * sub2 + 126452 * t
|
||||||
|
result.append({'slope': top1 / bottom, 'intercept': top2 / bottom})
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def _max_safe_chroma_for_l(l):
|
||||||
|
bounds = _get_bounds(l)
|
||||||
|
_hx_min = 1.7976931348623157e+308
|
||||||
|
_g = 0
|
||||||
|
while _g < 2:
|
||||||
|
i = _g
|
||||||
|
_g = _g + 1
|
||||||
|
length = _distance_line_from_origin(bounds[i])
|
||||||
|
if math.isnan(_hx_min):
|
||||||
|
_hx_min = _hx_min
|
||||||
|
elif math.isnan(length):
|
||||||
|
_hx_min = length
|
||||||
|
else:
|
||||||
|
_hx_min = min(_hx_min, length)
|
||||||
|
return _hx_min
|
||||||
|
|
||||||
|
|
||||||
|
def _max_chroma_for_lh(l, h):
|
||||||
|
hrad = h / 360 * math.pi * 2
|
||||||
|
bounds = _get_bounds(l)
|
||||||
|
_hx_min = 1.7976931348623157e+308
|
||||||
|
_g = 0
|
||||||
|
while _g < len(bounds):
|
||||||
|
bound = bounds[_g]
|
||||||
|
_g = (_g + 1)
|
||||||
|
length = _length_of_ray_until_intersect(hrad, bound)
|
||||||
|
if length >= 0:
|
||||||
|
if math.isnan(_hx_min):
|
||||||
|
_hx_min = _hx_min
|
||||||
|
elif math.isnan(length):
|
||||||
|
_hx_min = length
|
||||||
|
else:
|
||||||
|
_hx_min = min(_hx_min, length)
|
||||||
|
return _hx_min
|
||||||
|
|
||||||
|
|
||||||
|
def _dot_product(a, b):
|
||||||
|
sum = 0
|
||||||
|
_g1 = 0
|
||||||
|
_g = len(a)
|
||||||
|
while _g1 < _g:
|
||||||
|
i = _g1
|
||||||
|
_g1 = _g1 + 1
|
||||||
|
sum += a[i] * b[i]
|
||||||
|
return sum
|
||||||
|
|
||||||
|
|
||||||
|
def _from_linear(c):
|
||||||
|
if c <= 0.0031308:
|
||||||
|
return 12.92 * c
|
||||||
|
else:
|
||||||
|
return 1.055 * math.pow(c, 0.416666666666666685) - 0.055
|
||||||
|
|
||||||
|
|
||||||
|
def _to_linear(c):
|
||||||
|
if c > 0.04045:
|
||||||
|
return math.pow((c + 0.055) / 1.055, 2.4)
|
||||||
|
else:
|
||||||
|
return c / 12.92
|
||||||
|
|
||||||
|
|
||||||
|
def xyz_to_rgb(_hx_tuple):
|
||||||
|
return [
|
||||||
|
_from_linear(_dot_product(m[0], _hx_tuple)),
|
||||||
|
_from_linear(_dot_product(m[1], _hx_tuple)),
|
||||||
|
_from_linear(_dot_product(m[2], _hx_tuple))]
|
||||||
|
|
||||||
|
|
||||||
|
def rgb_to_xyz(_hx_tuple):
|
||||||
|
rgbl = [_to_linear(_hx_tuple[0]),
|
||||||
|
_to_linear(_hx_tuple[1]),
|
||||||
|
_to_linear(_hx_tuple[2])]
|
||||||
|
return [_dot_product(minv[0], rgbl),
|
||||||
|
_dot_product(minv[1], rgbl),
|
||||||
|
_dot_product(minv[2], rgbl)]
|
||||||
|
|
||||||
|
|
||||||
|
def _y_to_l(y):
|
||||||
|
if y <= epsilon:
|
||||||
|
return y / refY * kappa
|
||||||
|
else:
|
||||||
|
return 116 * math.pow(y / refY, 0.333333333333333315) - 16
|
||||||
|
|
||||||
|
|
||||||
|
def _l_to_y(l):
|
||||||
|
if l <= 8:
|
||||||
|
return refY * l / kappa
|
||||||
|
else:
|
||||||
|
return refY * math.pow((l + 16) / 116, 3)
|
||||||
|
|
||||||
|
|
||||||
|
def xyz_to_luv(_hx_tuple):
|
||||||
|
x = float(_hx_tuple[0])
|
||||||
|
y = float(_hx_tuple[1])
|
||||||
|
z = float(_hx_tuple[2])
|
||||||
|
divider = x + 15 * y + 3 * z
|
||||||
|
var_u = 4 * x
|
||||||
|
var_v = 9 * y
|
||||||
|
if divider != 0:
|
||||||
|
var_u = var_u / divider
|
||||||
|
var_v = var_v / divider
|
||||||
|
else:
|
||||||
|
var_u = float("nan")
|
||||||
|
var_v = float("nan")
|
||||||
|
l = _y_to_l(y)
|
||||||
|
if l == 0:
|
||||||
|
return [0, 0, 0]
|
||||||
|
u = 13 * l * (var_u - refU)
|
||||||
|
v = 13 * l * (var_v - refV)
|
||||||
|
return [l, u, v]
|
||||||
|
|
||||||
|
|
||||||
|
def luv_to_xyz(_hx_tuple):
|
||||||
|
l = float(_hx_tuple[0])
|
||||||
|
u = float(_hx_tuple[1])
|
||||||
|
v = float(_hx_tuple[2])
|
||||||
|
if l == 0:
|
||||||
|
return [0, 0, 0]
|
||||||
|
var_u = u / (13 * l) + refU
|
||||||
|
var_v = v / (13 * l) + refV
|
||||||
|
y = _l_to_y(l)
|
||||||
|
x = 0 - ((9 * y * var_u) / (((var_u - 4) * var_v) - var_u * var_v))
|
||||||
|
z = (((9 * y) - (15 * var_v * y)) - (var_v * x)) / (3 * var_v)
|
||||||
|
return [x, y, z]
|
||||||
|
|
||||||
|
|
||||||
|
def luv_to_lch(_hx_tuple):
|
||||||
|
l = float(_hx_tuple[0])
|
||||||
|
u = float(_hx_tuple[1])
|
||||||
|
v = float(_hx_tuple[2])
|
||||||
|
_v = (u * u) + (v * v)
|
||||||
|
if _v < 0:
|
||||||
|
c = float("nan")
|
||||||
|
else:
|
||||||
|
c = math.sqrt(_v)
|
||||||
|
if c < 0.00000001:
|
||||||
|
h = 0
|
||||||
|
else:
|
||||||
|
hrad = math.atan2(v, u)
|
||||||
|
h = hrad * 180.0 / 3.1415926535897932
|
||||||
|
if h < 0:
|
||||||
|
h = 360 + h
|
||||||
|
return [l, c, h]
|
||||||
|
|
||||||
|
|
||||||
|
def lch_to_luv(_hx_tuple):
|
||||||
|
l = float(_hx_tuple[0])
|
||||||
|
c = float(_hx_tuple[1])
|
||||||
|
h = float(_hx_tuple[2])
|
||||||
|
hrad = h / 360.0 * 2 * math.pi
|
||||||
|
u = math.cos(hrad) * c
|
||||||
|
v = math.sin(hrad) * c
|
||||||
|
return [l, u, v]
|
||||||
|
|
||||||
|
|
||||||
|
def hsluv_to_lch(_hx_tuple):
|
||||||
|
h = float(_hx_tuple[0])
|
||||||
|
s = float(_hx_tuple[1])
|
||||||
|
l = float(_hx_tuple[2])
|
||||||
|
if l > 99.9999999:
|
||||||
|
return [100, 0, h]
|
||||||
|
if l < 0.00000001:
|
||||||
|
return [0, 0, h]
|
||||||
|
_hx_max = _max_chroma_for_lh(l, h)
|
||||||
|
c = _hx_max / 100 * s
|
||||||
|
return [l, c, h]
|
||||||
|
|
||||||
|
|
||||||
|
def lch_to_hsluv(_hx_tuple):
|
||||||
|
l = float(_hx_tuple[0])
|
||||||
|
c = float(_hx_tuple[1])
|
||||||
|
h = float(_hx_tuple[2])
|
||||||
|
if l > 99.9999999:
|
||||||
|
return [h, 0, 100]
|
||||||
|
if l < 0.00000001:
|
||||||
|
return [h, 0, 0]
|
||||||
|
_hx_max = _max_chroma_for_lh(l, h)
|
||||||
|
s = c / _hx_max * 100
|
||||||
|
return [h, s, l]
|
||||||
|
|
||||||
|
|
||||||
|
def hpluv_to_lch(_hx_tuple):
|
||||||
|
h = float(_hx_tuple[0])
|
||||||
|
s = float(_hx_tuple[1])
|
||||||
|
l = float(_hx_tuple[2])
|
||||||
|
if l > 99.9999999:
|
||||||
|
return [100, 0, h]
|
||||||
|
if l < 0.00000001:
|
||||||
|
return [0, 0, h]
|
||||||
|
_hx_max = _max_safe_chroma_for_l(l)
|
||||||
|
c = _hx_max / 100 * s
|
||||||
|
return [l, c, h]
|
||||||
|
|
||||||
|
|
||||||
|
def lch_to_hpluv(_hx_tuple):
|
||||||
|
l = float(_hx_tuple[0])
|
||||||
|
c = float(_hx_tuple[1])
|
||||||
|
h = float(_hx_tuple[2])
|
||||||
|
if l > 99.9999999:
|
||||||
|
return [h, 0, 100]
|
||||||
|
if l < 0.00000001:
|
||||||
|
return [h, 0, 0]
|
||||||
|
_hx_max = _max_safe_chroma_for_l(l)
|
||||||
|
s = c / _hx_max * 100
|
||||||
|
return [h, s, l]
|
||||||
|
|
||||||
|
|
||||||
|
def rgb_to_hex(_hx_tuple):
|
||||||
|
h = "#"
|
||||||
|
_g = 0
|
||||||
|
while _g < 3:
|
||||||
|
i = _g
|
||||||
|
_g = _g + 1
|
||||||
|
chan = float(_hx_tuple[i])
|
||||||
|
c = math.floor(chan * 255 + 0.5)
|
||||||
|
digit2 = int(c % 16)
|
||||||
|
digit1 = int((c - digit2) / 16)
|
||||||
|
|
||||||
|
h += hex_chars[digit1] + hex_chars[digit2]
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
def hex_to_rgb(hex):
|
||||||
|
hex = hex.lower()
|
||||||
|
ret = []
|
||||||
|
_g = 0
|
||||||
|
while _g < 3:
|
||||||
|
i = _g
|
||||||
|
_g = _g + 1
|
||||||
|
index = i * 2 + 1
|
||||||
|
_hx_str = hex[index]
|
||||||
|
digit1 = hex_chars.find(_hx_str)
|
||||||
|
index1 = i * 2 + 2
|
||||||
|
str1 = hex[index1]
|
||||||
|
digit2 = hex_chars.find(str1)
|
||||||
|
n = digit1 * 16 + digit2
|
||||||
|
ret.append(n / 255.0)
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def lch_to_rgb(_hx_tuple):
|
||||||
|
return xyz_to_rgb(luv_to_xyz(lch_to_luv(_hx_tuple)))
|
||||||
|
|
||||||
|
|
||||||
|
def rgb_to_lch(_hx_tuple):
|
||||||
|
return luv_to_lch(xyz_to_luv(rgb_to_xyz(_hx_tuple)))
|
||||||
|
|
||||||
|
|
||||||
|
def hsluv_to_rgb(_hx_tuple):
|
||||||
|
return lch_to_rgb(hsluv_to_lch(_hx_tuple))
|
||||||
|
|
||||||
|
|
||||||
|
def rgb_to_hsluv(_hx_tuple):
|
||||||
|
return lch_to_hsluv(rgb_to_lch(_hx_tuple))
|
||||||
|
|
||||||
|
|
||||||
|
def hpluv_to_rgb(_hx_tuple):
|
||||||
|
return lch_to_rgb(hpluv_to_lch(_hx_tuple))
|
||||||
|
|
||||||
|
|
||||||
|
def rgb_to_hpluv(_hx_tuple):
|
||||||
|
return lch_to_hpluv(rgb_to_lch(_hx_tuple))
|
||||||
|
|
||||||
|
|
||||||
|
def hsluv_to_hex(_hx_tuple):
|
||||||
|
return rgb_to_hex(hsluv_to_rgb(_hx_tuple))
|
||||||
|
|
||||||
|
|
||||||
|
def hpluv_to_hex(_hx_tuple):
|
||||||
|
return rgb_to_hex(hpluv_to_rgb(_hx_tuple))
|
||||||
|
|
||||||
|
|
||||||
|
def hex_to_hsluv(s):
|
||||||
|
return rgb_to_hsluv(hex_to_rgb(s))
|
||||||
|
|
||||||
|
|
||||||
|
def hex_to_hpluv(s):
|
||||||
|
return rgb_to_hpluv(hex_to_rgb(s))
|
Loading…
Reference in a new issue